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1. Introduction and summary

Solitonic solutions of the field equations of motion play an essential role in our under-

standing of field and string theories beyond perturbation theory. This persists for the

noncommutative extension of scalar and supersymmetric gauge field theories which appear

naturally in string theories [1]–[4]. In particular, the massless modes of the open N=2

string in a space-time filling brane with a constant NS B-field are described by noncom-

mutative self-dual Yang-Mills (SDYM) theory in 2+2 dimensions [5]. Upon reduction on

the worldvolume of n coincident D2-branes there emerges a noncommutative generaliza-

tion [6] of a modified U(n) chiral model in 2+1 dimensions known as the Ward model [7].

The integrability of this model [7]–[12] is preserved under the noncommutative deforma-

tion [13, 14]. In [13]–[18] families of multi-soliton and plane-wave solutions to its Moyal-

deformed equations of motions were studied. Also, reductions of wave configurations in the

2+1 dimensional model to solutions of the noncommutative sine-Gordon equations were de-

scribed [19]. We remark that not only the (noncommutative) Ward-model or sine-Gordon

equations but a lot of other integrable equations in three and fewer dimensions derive

from the (noncommutative) SDYM equations by suitable reductions (see e.g. [20]–[25] and

references therein).

Given the fact that spacetime supersymmetry is an essential ingredient of string theory,

it is natural to consider supersymmetric extensions of the above scenario. This was done

by Witten [26] who has shown that N=4 super SDYM theory appears in twistor string

theory.1 Later, it was shown that N=4 super SDYM in 2+2 dimensions can be reduced

to an N=8 supersymmetric extension of the Ward model in 2+1 dimensions [29]. Subse-

quently, truncations to N<8 and a noncommutative Moyal deformation of this model were

considered, and noncommutative multi-soliton solutions were constructed [30]. However,

1For further developments and references see e.g. [27, 28].
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as in the non-supersymmetric case, generic multi-soliton configurations were found to be

devoid of scattering [30] (see also [31]).

These supersymmetric no-scattering soliton configurations were obtained by applying

a solution-generating technique (the dressing method [32]) to the N -extended noncommu-

tative U(n) Ward model, taking a dressing ansatz for the ψ function with only first-order

poles in the spectral parameter ζ. Here we show that for multi-waves this ansatz yields

nontrivial wave-wave interactions since each plane wave experiences a phase shift. Further-

more, by allowing for second-order poles in the dressing ansatz, we construct N -extended

noncommutative (time-dependent) two-soliton configurations with genuine soliton-soliton

interaction. Thus, the studied features of the undeformed Ward model survive not only

the Moyal deformation but the supersymmetric extension as well.

2. The noncommutative N -extended Ward model

Recall that nonlinear sigma models in 2+1 dimensions2 may be Lorentz-invariant or inte-

grable but not both. An integrable model appears when one adds to the standard sigma-

model field equations a Wess-Zumino-Witten term which explicitly breaks the Lorentz

group SO(2,1) to the group SO(1,1) ∼= GL(1, R) [7]. An N=8 supersymmetric generaliza-

tion of this model has been introduced in [29] and is easily truncated to any smaller even

number N of supersymmetries. To formulate this model, one should introduce:

• the space R
2,1 = (R3, g) with coordinates (xa) = (t, x, y)

• the metric g = diag(−1,+1,+1)

• the superspace R
3|2N with coordinates (xa|ηα

i , θiα) for α = 1, 2 and i = 1, . . . , 1
2N ≤ 4

• the antichiral superspace R
3|N with coordinates (xa|ηα

i )

The N -extended Ward model describes the dynamics of a U(n)-valued superfield Φ(xa, ηα
i )

living on the antichiral superspace R
3|N . The noncommutative Moyal deformation of this

model was considered in [30].

Since integrability can be preserved in noncommutative deformations (see e.g. [13]–

[19]), we right away Moyal deform the supersymmetric Ward model with a constant real

noncommutativity parameter θ ≥ 0. This is achieved by replacing the ordinary product of

classical fields (or their components) with the noncommutative associative star product,3

(f ⋆ g)(t, x, y, ηα
i ) = f(t, x, y, ηα

i ) exp

{

i

2
θ (

←−
∂x

−→
∂y −

←−
∂y

−→
∂x)

}

g(t, x, y, ηα
i ) . (2.1)

Note that we choose a purely bosonic space-space deformation, i.e. the time coordinate

remains commutative and no derivatives with respect to the Grassmann variables ηα
i appear

2Sigma models in k dimensions describe mappings of a k-dimensional manifold X into a manifold Y .

Chiral models pertain to the special case when Y is a Lie group.
3See [33] for reviews on noncommutative field theories.
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in (2.1). The U(n)-valued superfield Φ(t, x, y, ηα
i ) of the noncommutative N -extended U(n)

Ward model [30] obeys the classical field equations

∂x(Φ† ⋆ ∂xΦ) + ∂y(Φ
† ⋆ ∂yΦ) − ∂t(Φ

† ⋆ ∂tΦ) + ∂y(Φ
† ⋆ ∂tΦ) − ∂t(Φ

† ⋆ ∂yΦ) = 0 ,

∂i
1(Φ

† ⋆ ∂xΦ) − ∂t(Φ
† ⋆ ∂i

2Φ) + ∂y(Φ
† ⋆ ∂i

2Φ) = 0 ,

∂i
1(Φ

† ⋆ ∂tΦ) + ∂i
1(Φ

† ⋆ ∂yΦ) − ∂x(Φ† ⋆ ∂i
2Φ) = 0 ,

∂i
1(Φ

† ⋆ ∂j
2Φ) + ∂j

1(Φ
† ⋆ ∂i

2Φ) = 0 ,

(2.2)

where ∂i
α := ∂/∂ηα

i , and the unitarity condition reads Φ†⋆Φ = Φ⋆Φ† = 1n, with † denoting

hermitian conjugation. The Wess-Zumino-Witten terms responsible for the integrability

are the last two terms in the first line above.

As it was discussed in [29, 30], the field equations (2.2) are equivalent to

D̂i
αÂj

β + D̂j
βÂi

α + Âi
α ⋆ Âj

β + Âj
β ⋆ Âi

α + (α ↔ β) = 0 (2.3)

with the full superfields

Âi
1 = 0 and Âi

2 = Φ† ⋆ D̂i
2Φ . (2.4)

Here,

D̂i
α = ∂i

α + 2θiβ∂(αβ) with ∂(11) = ∂t − ∂y , ∂(12) = ∂(21) = ∂x and ∂(22) = ∂t + ∂y .

(2.5)

Furthermore, by expanding the superfields Âi
α in ηβ

j , one can show that the equations (2.3)

are equivalent to a supersymmetric extension of the Bogomolny-type Yang-Mills-Higgs

equations on a multiplet (A(αβ), χiα, H, φij , χ̃α
i , Gαβ) of space-time component fields or

its N<8 truncation [29, 30]. Here A(αβ) = A(βα) are the components of a vector in spinorial

notation, Gαβ = Gβα are the components of a (pseudo)vector dual to a two-form, χiα and

χ̃α
i are components of spinors, and φij = −φji are scalars in addition to the Higgs scalar H.

The supersymmetry algebra in 2+1 dimensions is generated by the 2N supercharges

Q̂iα = ∂iα − 2ηβ
i ∂(αβ) and Q̂i

α = ∂i
α . (2.6)

The extended and deformed Ward-model equations (2.2) are invariant under the infinites-

imal supersymmetry transformations generated by these supercharges because they anti-

commute with D̂i
α.

In order to avoid cluttering the formulae we suppress the ‘⋆’ notation for noncom-

mutative multiplication from now on; all products are assumed to be star products, and

functional operations (e.g. inverses) use the star product.

3. Explicit solutions via the dressing approach

Linear system. One of the powerful tools for constructing solutions to integrable equa-

tions is the so-called ‘dressing method’ [32] which is easily extended to the noncommutative

and supersymmetric setup [13, 14, 30]. The key observation is that the field equations (2.3)

– 3 –
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(or (2.2)) can be obtained as compatibility conditions for a linear system of differential

equations. The six antichiral superfield components

Âi
α = Ai

α + 2θiβ(A(αβ) − εαβH) (3.1)

defined by (2.4) and (2.5) read

A(12) −H = 0 and A(22) = Φ†∂(22)Φ =: A
A(11) = 0 and A(12) + H = Φ†∂(12)Φ =: B

Ai
1 = 0 and Ai

2 = Φ†∂i
2Φ =: Ci

(3.2)

With these data, we consider the linear equations

(ζ∂x − ∂t − ∂y)ψ = A ψ ,

(ζ∂t − ζ∂y − ∂x)ψ = B ψ ,

(ζ∂i
1 − ∂i

2)ψ = Ci ψ ,

(3.3)

where the n×n matrix ψ depends on (xa|ζ, ηα
i ) and the n×n matrices A, B and Ci are

superfield functions of (xa|ηα
i ) ∈ R

3|N but do not depend on the spectral parameter ζ

which lies in the extended complex plane C ∪ {∞} = CP 1.

Compatibility conditions. The compatibility conditions for the linear system (3.3) are

∂xA− (∂t+∂y)B − [A,B] = 0 , ∂i
2A− (∂t+∂y)Ci + [Ci,A] = 0 ,

∂i
2B − ∂xCi + [Ci,B] = 0 , {∂i

2 + Ci, ∂j
2 + Cj} = 0 ,

(∂t−∂y)A− ∂xB = 0 , ∂i
1B − (∂t−∂y)Ci = 0 ,

∂i
1A− ∂xCi = 0 , ∂i

1Cj + ∂j
1Ci = 0 .

(3.4)

It is easy to see that (3.2) solves the first two lines and turns the last two lines into (2.2).

The GL(n, C)-valued superfield ψ is subject to the reality condition [30]

ψ(t, x, y, ζ, η) [ψ(t, x, y, ζ̄ , η)]† = 1n . (3.5)

Inserting the parametrization (3.2) of A, B and Ci into the linear system (3.3), we obtain

the standard gauge-fixing conditions

ψ(t, x, y, η, ζ→∞) = 1n + O(ζ−1) ,

ψ(t, x, y, η, ζ→0) = Φ†(t, x, y, η) + O(ζ) .
(3.6)

The second equation yields Φ = ψ−1(ζ=0) and also A, B and Ci via (3.2).

Explicit N -extended solutions. One can rewrite (3.3) in the form

ψ(∂t + ∂y − ζ∂x)ψ† = A , ψ(∂x − ζ∂t + ζ∂y)ψ
† = B and ψ(∂i

2 − ζ∂i
1)ψ

† = Ci , (3.7)

where the right-hand sides of (3.7) do not depend on ζ. Therefore the left-hand sides

of (3.7) as well as the reality condition (3.5) do not depend on ζ, while ψ is expected to be

a nontrivial meromorphic function of ζ globally defined on CP 1.

– 4 –
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We briefly recall the dressing construction. We assume that ψ possesses m poles in ζ

at mutually distinct locations µk for k = 1, . . . ,m in the complex lower half plane. One

can build a solution ψm featuring m simple poles at µ1, . . . , µm by left-multiplying an

(m−1)-simple-pole solution ψm−1 with a single-pole factor of the form

1n +
µm − µ̄m

ζ − µm
Pm(xa, ηα

i ) . (3.8)

Here, the n×n matrix function Pm is a hermitian projector of rank rm, i.e. P †
m = Pm and

P 2
m = Pm, and therefore one can decompose

Pm = Tm (T †
mTm)−1T †

m , (3.9)

where Tm is an n×rm matrix depending on xa and ηα
i . So, the iteration ψ1 7→ . . . 7→ ψm

yields the multiplicative ansatz

ψm =
m−1
∏

ℓ=0

(

1n +
µm−ℓ − µ̄m−ℓ

ζ − µm−ℓ
Pm−ℓ

)

(3.10)

which, via a partial fraction decomposition, may be rewritten in the additive form

ψm = 1n +
m

∑

k=1

ΛmkS
†
k

ζ − µk
, (3.11)

where Λmk and Sk are some n×rk matrices depending on xa and ηα
i .

In [30] it was shown that all Ward-model field equations are satisfied if one takes

Sk = Sk(wk, η
i
k) and Tk =

{

k−1
∏

l=1

(

1n − µk−l − µ̄k−l

µk−l − µ̄k
Pk−l

)

}

Sk (3.12)

with

wk := x+
1

2
(µ̄k−µ̄−1

k ) y+
1

2
(µ̄k+µ̄−1

k ) t and ηi
k := η1

i +µ̄kη
2
i for k = 1, . . . ,m . (3.13)

Substituting (3.12) into (3.9), we obtain from (3.10) the solution

Φm = ψ−1
m (ζ=0) =

m
∏

k=1

(

1n − ρkPk

)

with ρk = 1 − µk

µ̄k
. (3.14)

Furthermore, from (3.7) we read off

A =

m
∑

k=1

(µk−µ̄k)∂xPk , B =

m
∑

k=1

(µk−µ̄k)(∂t−∂y)Pk and Ci =

m
∑

k=1

(µk−µ̄k)∂
i
1Pk .

(3.15)

Thus, the solutions of the noncommutative N -extended integrable U(n) chiral model in

2+1 dimensions described by the simple-pole ansatz (3.10)–(3.12) are parametrized by the

set {Sk}m
1 of matrix-valued functions of wk and ηi

k and by the pole positions µk.

– 5 –
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4. Configuration of two noncommutative plane waves

The solutions constructed in the previous section have solitonic character when all the

functions {S1}m
1 are rational (see e.g. [7, 8, 12 – 14, 30]). For the dressing ansatz (3.10)

with pairwise distinct µk it was shown that no scattering occurs in the N -extended m-

soliton configuration [30]. However, it is known that in the bosonic commutative [10] and

noncommutative [15, 17] cases the choice of exponentials for {S1}m
1 leads to a configuration

of m plane waves which do feature interaction. It is natural to expect that N -extended

plane-wave configurations have the same properties. We will demonstrate this on the

example of a two-wave configuration which is a particular solution of the noncommutative

N=2 supersymmetric U(2) Ward model. Note that the properties of a solution describing

m extended waves essentially depends on µk ∈ C and the parameters in {Sk}m
1 , and a

complete study of the interaction of such waves is far from a trivial matter [10]. That is

why we restrict ourselves to a special form of Sk and a choice of parameters which simplifies

the analysis.

Extended wave solution. Let us take µ to be purely imaginary,

µ = −ip with p > 1 . (4.1)

Then from (3.13) for N=2 we obtain

w = x +
i

2p

(

(p2+1) y + (p2−1) t
)

and η = η1 + i p η2 . (4.2)

We choose T = S = S(w, η) in the form

T =

(

1 + ηε

ebw

)

, (4.3)

where ε is a Grassmann-odd parameter and b = bx + i by is a complex number. The

form (4.3) is obviously not the most general, but it extends the simplest bosonic wave

ansatz by a nilpotent term.

Our choice (4.1)–(4.3) then yields

P = T (T †T )−1T † =







ᾱ α

ᾱ α+e2x̃−θ̃

α ex̃e−iỹ

ᾱ α+e2x̃

ᾱ ex̃eiỹ

ᾱ α+e2x̃
e2x̃+θ̃

ᾱ α+e2x̃+θ̃






(4.4)

with the abbreviations

x̃ := bxx − by

2p

(

(p2+1)y + (p2−1)t
)

and ỹ := byx +
bx

2p

(

(p2+1) y + (p2−1) t
)

, (4.5)

θ̃ :=
|b|2
2p

(p2+1) θ , α := 1 + η ε and ᾱ = 1 + η̄ ε̄ . (4.6)

For the U(2)-valued superfield Φ which is by construction a solution to (2.2), we finally

find the one-wave configuration

Φ = 1n − 2P =







e2x̃−θ̃−ᾱ α

e2x̃−θ̃+ᾱ α
−2α ex̃−iỹ

e2x̃+ᾱ α

−2ᾱ ex̃+iỹ

e2x̃+ᾱ α
− e2x̃+θ̃−ᾱ α

e2x̃+θ̃+ᾱ α






. (4.7)

– 6 –
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Notice that all expressions in (4.4) and (4.7) are formed with Moyal star multiplication.

The wave described by (4.3)–(4.7) simply moves at constant velocity which can be

shown by the same arguments as in [10]. Moreover, the wave front lies along

x̃ = 0 , (4.8)

which for fixed time is a straight line in the xy-plane. From (4.4) one can see that (cf. [17])

lim
x̃→−∞

P =

(

1 0

0 0

)

and lim
x̃→+∞

P =

(

0 0

0 1

)

, (4.9)

corresponding to the large-time limits t → ±∞ for by < 0 and finite x, y.4 Thus, we get

the asymptotics

Φ±∞ = lim
t→±∞

Φ = ±
(

1 0

0 −1

)

, (4.10)

which corresponds to straight wave moving far away from the t=0 line

bxx − by

2p
(p2+1) y = 0 (4.11)

on either side.

Interacting waves. Now we consider two waves defined by formulae similar to (4.1)–

(4.3). Namely, we choose

µk = −i pk and ηk = η1 + i pkη
2 with p2 > p1 > 1 , (4.12)

wk = x +
i

2pk

(

(p2
k+1) y + (p2

k−1) t
)

and αk = 1 + ηkεk , (4.13)

Sk =

(

αk

ebkwk

)

for k = 1, 2 , (4.14)

where εk are Grassmann-odd parameters and bk = bx
k + i by

k are complex numbers. We also

introduce

x̃k := bx
kx − by

k

2pk

(

(p2
k+1) y + (p2

k−1) t
)

and ỹk := by
kx +

bx
k

2pk

(

(p2
k+1) y + (p2

k−1) t
)

,

(4.15)

so that

bkwk = x̃k + i ỹk and [x̃k, ỹk] = i θ̃k with θ̃k :=
|bk|2
2pk

(p2
k+1) θ . (4.16)

The relations (3.12) read

T1 = S1 and T2 =

(

12 − 2p1

p1 + p2
P1

)

S2 , (4.17)

4For b
y

> 0 we simply have the correspondence x̃ → ±∞ ⇔ t → ∓∞.

– 7 –
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from which we construct the matrices

Pk = Tk (T †
kTk)

−1T †
k for k = 1, 2 and Φ = (12 − 2P2) (12 − 2P1) , (4.18)

arriving at a two-wave configuration.

Let us move with the second wave. This means that we consider points around its

wave front defined by the equation

x̃2 ≡ bx
2x − by

2

2p2

(

(p2
2+1) y + (p2

2−1) t
)

= 0 , (4.19)

which is a line in the xy-plane moving in time. For a proper choice of parameters keeping

x̃2 finite while x̃1 → ±∞, asymptotically the first wave will be far away from the second

wave on either side. Specifically for by
1 < 0, (4.18) and (4.9) give us

T2|t,x̃1→−∞ →
{

12 −
2p1

p1 + p2

(

1 0

0 0

)}

(

α2

eb2w2

)

= eγ

(

α2

eb2w2−γ

)

, (4.20)

T2|t,x̃1→+∞ →
{

12 −
2p1

p1 + p2

(

0 0

0 1

)}

(

α2

eb2w2

)

=

(

α2

eb2w2+γ

)

, (4.21)

where

eγ :=
p2 − p1

p2 + p1
. (4.22)

As a consequence, we arrive at

Φ|t→±∞ → ±







eb2w2+b̄2w̄2±2γ−θ̃2−ᾱ2α2

eb2w2+b̄2w̄2±2γ−θ̃2+ᾱ2α2

− 2α2eb̄2w̄2±γ

eb2w2+b̄2w̄2±2γ+ᾱ2α2

− 2ᾱ2eb2w2±γ

eb2w2+b̄2w̄2±2γ+ᾱ2α2

− eb2w2+b̄2w̄2±2γ+θ̃2−ᾱ2α2

eb2w2+b̄2w̄2±2γ+θ̃2+ᾱ2α2







(

1 0

0 −1

)

= ±







e2x̃2±2γ−θ̃2−ᾱ2α2

e2x̃2±2γ−θ̃2+ᾱ2α2

2α2ex̃2−iỹ2±γ

e2x̃2±2γ+ᾱ2α2

−2ᾱ2ex̃2+iỹ2±γ

e2x̃2±γ+ᾱ2α2

e2x̃2±2γ+θ̃2−ᾱ2α2

e2x̃2±2γ+θ̃2+ᾱ2α2






.

(4.23)

Comparing the t → ±∞ limits of this configuration, we see that (up to sign) Φ|t→+∞

deviates from Φ|t→−∞ only by the phase shift b2w2−γ 7→ b2w2+γ. This coincides with

the N=0 commutative result found in [10]. By symmetry, both waves experience the same

phase shift of

2γ = 2 ln
p2 − p1

p2 + p1
. (4.24)

Note that the explicit asymptotic form of Φ depends on θ but the phase shift does not.

Although our two waves interact in a rather simple way, their dynamics depends essentially

on the parameters pk, bk and εk. The N=0 waves are recovered by putting εk = 0,

i.e. αk = 1. In the N -extended case the choice of Sk may be more general than (4.14),

leading to more involved interaction dynamics.
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5. Two interacting solitons

One-soliton configuration. According to the general formalism discussed in section 3,

the time-dependent configuration for m=1 and µ not necessarily being purely imaginary

simplifies to

ψ = 1n +
µ − µ̄

ζ − µ
P and Φ = ψ−1(ζ=0) = 1n +

µ̄ − µ

µ
P (5.1)

with

P = T (T †T )−1T † and T = T (w1, η
i
1) , (5.2)

where w1 and ηi
1 are given in (3.13). This configuration will describe a moving soliton if

the n×r matrix T depends on w1 rationally (cf. e.g. [7, 13, 30]). For µ = −i we encounter

the static case, where

ψ = 1n − 2i

ζ + i
P , Φ = 1n − 2P , w1 = z ≡ x + iy and ηi

1 = ηi ≡ η1
i + iη2

i (5.3)

with P and T = T (w1, η
i
1) = T (z, ηi) given in (5.2). The n×n matrix superfields A, B and

Ci from the linear system (3.3) and eqs. (3.4) are expressed in terms of P as (cf. (3.15))

A = −2i ∂xP , B = 2i ∂yP and Ci = −2i ∂i
1P . (5.4)

We want to ‘dress’ the static solution (5.3) of the field equations (2.2) to produce a time-

dependent interacting two-soliton configuration of the Moyal-deformed supersymmetric

Ward model. It is known in the non-supersymmetric case that soliton interactions appear

only when higher-order poles in ζ are considered for the dressing ansatz (3.10) [8, 9, 14].

The simplest such situation occurs for a double pole at ζ = −i. Therefore, we take the

static configuration given by (5.3) and (5.4) as our seed solution and consider the dressing

transformation

ψ 7→ ψ̃=(1n−
2i

ζ + i
P̃ )ψ=

(

1n−
2i

ζ + i
P̃

)(

1n−
2i

ζ + i
P

)

=1n−
2i

ζ + i
(P+P̃ )− 4

(ζ + i)2
P̃ P .

(5.5)

From the reality condition (3.5) we obtain the restrictions P̃ 2 = P̃ and P̃ † = P̃ ,

qualifying P̃ as a hermitian projector

P̃ = T̃ (T̃ †T̃ )−1T̃ † (5.6)

built from some n×r̃ matrix T̃ . In the following we choose r = 1 = r̃, i.e. we consider rank

one projectors P and P̃ .

Demanding that ψ̃ is again a solution of the linear equations (3.3) with some new

superfields Ã, B̃ and C̃i, we derive

Ã= ψ̃(∂t+∂y−ζ∂x)ψ̃†=

(

1n−
2i

ζ+i
P̃

)

A
(

1n+
2i

ζ−i
P̃

)

+

(

1n−
2i

ζ+i
P̃

)

(∂t+∂y−ζ∂x)

(

1n+
2i

ζ−i
P̃

)

,

B̃= ψ̃(∂x−ζ∂t+ζ∂y)ψ̃
†=

(

1n−
2i

ζ+i
P̃

)

B
(

1n+
2i

ζ−i
P̃

)

+

(

1n−
2i

ζ+i
P̃

)

(∂x−ζ∂t+ζ∂y)

(

1n+
2i

ζ−i
P̃

)

,

C̃i = ψ̃(∂i
2−ζ∂i

1)ψ̃
†=

(

1n−
2i

ζ+i
P̃

)

Ci

(

1n+
2i

ζ−i
P̃

)

+

(

1n−
2i

ζ+i
P̃

)

(∂i
2−ζ∂i

1)

(

1n+
2i

ζ−i
P̃

)

.

(5.7)
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The poles at ζ = ±i on the right-hand side of these equations have to be removable since

Ã, B̃ and C̃i are independent of ζ. Putting to zero the corresponding residues, we find the

conditions

(1n−P̃ )
(

∂z̄T̃ + (∂ z̄P ) T̃
)

= 0 , (5.8a)

(1n−P̃ )
(

∂tT̃ − 2i(∂zP ) T̃
)

= 0 , (5.8b)

(1n−P̃ )

(

1

2
(∂i

1+i∂i
2)T̃ + (∂i

1P ) T̃

)

= 0 . (5.8c)

After constructing a projector P̃ via a solution T̃ of these equations, we obtain a solu-

tion (5.5) of the linear equations (3.7) and, hence, a new (dressed) superfield

Φ̃ = ψ̃−1(ζ=0) = (1n − 2P ) (1n − 2P̃ ) (5.9)

obeying the field equations (2.2).

Explicit nonabelian solution. In order to generate an explicit example solving (5.8a)–

(5.8c), we specialize to the group U(2) (i.e. choose n=2) and take as a one-soliton seed

configuration

P = T (T †T )−1T † with T =

(

1

f(z, ηi)

)

, (5.10)

where implicit ⋆ products are still assumed everywhere. Inspired by the known form of T̃

in the bosonic case [8, 14], we make the ansatz

T̃ = T + T⊥(T †
⊥T⊥)−1g with T⊥ =

(

f(z, ηi)

−1

)

(5.11)

being orthogonal to T , i.e.

T †T⊥ = 0 ⇒ P T⊥ = 0 and 12 − P = T⊥(T †
⊥T⊥)−1T †

⊥ , (5.12)

and with g(t, z, z̄, ηi, η̄i) being a superfield to be determined.

Substituting (5.11) into (5.8a), we get

∂z̄g = 0 ⇒ g = g(t, z, ηi, η̄i) . (5.13)

From (5.8b) it follows that

∂tg = −2i ∂zf ⇒ g = −2i
(

t ∂zf + H(z, ηi, η̄i)
)

. (5.14)

Finally, from (5.8c) we obtain

∂̄ig = −∂if ⇒ g = −2i
(

t ∂zf + h(z, ηi)
)

+ η̄i∂if , (5.15)

where h(z, ηi) is an arbitrary function of z and ηi, and we have used the abbreviations

(cf. (5.3))

∂i :=
1

2
(∂i

1 − i∂i
2) and ∂̄i :=

1

2
(∂i

1 + i∂i
2) . (5.16)
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For further analysis we expand f and h in ηi,

f(z, ηi) = f0(z) + ηifi(z) + . . . and h(z, ηi) = h0(z) + ηihi(z) + . . . . (5.17)

If we restrict ourselves to a bosonic subsector, studied in [8, 14], then the choice

f0 = z and h0 = z2 (5.18)

yields a configuration of two lumps centered at z = ±√−t, which for negative times accel-

erate symmetrically along the x-axis towards the origin z=0 of the Moyal plane, interact

at small t, and decelerate to infinity along the y-axis for positive times. Thus, a head-on

collision of these lumps results in a 90◦ scattering. For the general superfield solution given

by (5.9)–(5.11) and (5.15), the analysis seems much more complicated even when N=2.

However, for any N≤8 and f0, h0 chosen as above, the bosonic core of the solution behaves

in the above-described way. Hence, two N -extended lumps carrying fermionic degrees of

freedom can interact in the Moyal plane. We postpone a full-fledged scattering analysis of

these supersymmetric configurations to future work.

Explicit abelian solution. A genuinely novel feature of noncommutative sigma mod-

els is the appearance of abelian solitons, i.e. nontrivial solutions for the group U(1). To

describe these, one must employ the Moyal-Weyl correspondence and represent the noncom-

mutativity by operator-valued functions of only (t|ηα
i , θiα) instead of C-number functions

of (t, z, z̄|ηα
i , θiα) subject to ⋆ multiplication. These operators act on an auxiliary Fock

space F spanned by the basis

|ℓ〉 =
(a†)ℓ√

ℓ!
|0〉 for ℓ = 0, 1, 2, . . . and a |0〉 = 0 where [a , a†] = 1 .

(5.19)

Here,
√

2θ a is the operator corresponding to the coordinate function z, and likewise for the

hermitian conjugate. In this setting, projectors of finite rank r in the total space C
n ⊗ F

decompose as

P = |T 〉 〈T |T 〉−1〈T | , where |T 〉 =
(

|T1〉, |T2〉, . . . , |Tr〉
)

(5.20)

denotes a row of r kets from C
n ⊗F . In the following we take n = 1 and r = 1 (and drop

the index).

It was demonstrated in [30] that the U(1) solutions are based on a coherent state

|T 〉 = |α(ηi)〉 = eα(ηi)a† |0〉 (5.21)

with a Grassmann-valued parameter α. We may always translate a static soliton to the

origin of the Moyal plane, which amounts to dropping the body part of α. Considering

N=2 supersymmetry, i.e. a single complex Grassmann-odd coordinate η, this implies

α(η) = η ǫ (5.22)

with a Grassmann-odd parameter ǫ, and thus

|T 〉 = |ηǫ〉 = |0〉 + ηǫ |1〉 . (5.23)

– 11 –
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The corresponding projector is easily computed, and the final static abelian rank-one one-

soliton configuration reads (in ⋆-product formulation)

Φ = 1 − 4 e−|z|2/θ

{

1 +
2z̄√
2θ

ηǫ +
2z√
2θ

ǭη̄ + 2

( |z|2
θ

−1

)

ǫǭηη̄

}

. (5.24)

To construct a time-dependent abelian two-soliton solution (5.9), we must dress the

seed solution based on (5.23) with a factor of 1−2P̃ based on a second ket |T̃ 〉. Again

taking the rank r̃=1, we solve (5.8a)–(5.8c) and find

|T̃ 〉 = |T 〉 + |T 1
⊥〉 g1(t) + |T 2

⊥〉 g2(t) with 〈T |T 1,2
⊥ 〉 = 0 , (5.25)

where g1(t) = 1 and g2(t) = −it
√

2/θ multiply the kets

|T 1
⊥〉 = (ηǭ + ǫη̄) |1〉 and |T 2

⊥〉 = η̄ǭ |0〉 + (1 − ǫǭηη̄) |1〉 +
√

2 ηǫ |2〉 , (5.26)

respectively. As in the bosonic case, the time dependence drops out for t → ±∞, and the

two limits yield the same asymptotic configuration, which is supported near the origin.

Hence, this configuration describes a two-soliton bound state dressed with a fermionic

degree of freedom.
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